Preprocessors
Base preprocessors
- class udao.data.preprocessors.base_preprocessor.StaticFeaturePreprocessor
Bases:
ABC,Generic[T]Base class for feature processors that do not require training.
- class udao.data.preprocessors.base_preprocessor.TrainedFeaturePreprocessor
Bases:
ABC,Generic[T]Base class for feature processors that require training.
Normalize preprocessor
- class udao.data.preprocessors.normalize_preprocessor.FitTransformProtocol(*args, **kwargs)
Bases:
Protocol
- class udao.data.preprocessors.normalize_preprocessor.NormalizePreprocessor(normalizer: FitTransformProtocol, data_key: str = 'data')
Bases:
TrainedFeaturePreprocessor[T]Normalize the data using a normalizer that implements the fit and transform methods, e.g. MinMaxScaler.
- Parameters:
normalizer (FitTransformProtocol) – A normalizer that implements the fit and transform methods (e.g. sklearn.MinMaxScaler)
df_key (str) – The key of the dataframe in the container.
- preprocess(container: T, split: Literal['train', 'val', 'test']) T
Normalize the data in the container.
- Parameters:
container (T) – Child of BaseContainer
split (DatasetType) – Train or other (val, test).
- Returns:
Child of BaseContainer with the normalized data.
- Return type:
T